

FALLSTUDIE

SCHMITTE HERRENSCHWANDEN

PROJEKT

Schmitte Herrenschwanden

ARCHITEKTUR

unbekannt

TYPOLOGIE

Schmiede und Wohngebäude

BAUJAHR

Erstellung: 1841

Inschrift (nachträgliche?)

Unterkellerung

Letzte Sanierung: 2011 Aussenputz und Ziegel

ZIELE

- Sanieren
 Der bestehenden Bausubstanz
- Erneuerbare EnergieNutzen und erzeugen
- Integration der Massnahmen In den historischen Kontext

I. AUSGANGSLAGE

- Standort
- Impressionen
- Pläne
- Systemkette Bestand
- Thermischer Bedarf Bestand
- Elektrischer Bedarf Bestand

STANDORT

Herrenschwandenstrasse 3, 3037 Herrenschwanden (BE)

A / Architecture and Building Systems

IMPRESSIONEN

Südostfassade (1)

Gartenzugang

Südwestfassade (2)
Aussenarbeitsbereich Schmiede

Nordwestfassade (3) Parkplätze

IMPRESSIONEN

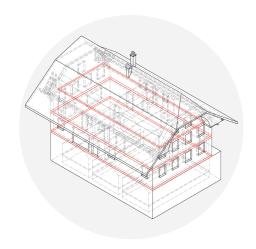
Nordostfassade (5,6) Zugang Wohnungen und Schmiede

Wohnung EG (**7**,**8**) Küche und Wohnraum

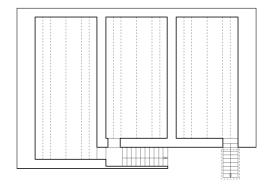
Schmiede (**9**) *Innenarbeitsbereich*

PLÄNE

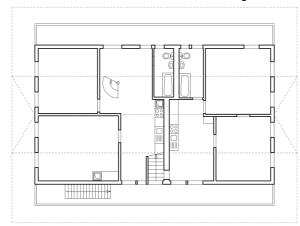
GRUNDRISSE | FLÄCHENAUSZÜGE

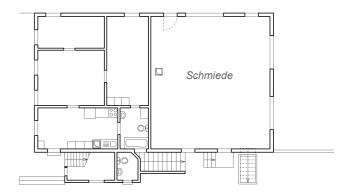

Nettogeschossfläche NGF = 350m²

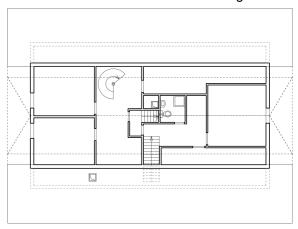
Erdgeschoss: 130m² Obergeschoss: 126m² Dachgeschoss: 94m²


Geschossfläche GF = 400m²

Erdgeschoss: 145m² Obergeschoss: 145m² Dachgeschoss: 110m²


Energiebezugsfläche EBF = 400m²


A / Architecture and Building Systems


Untergeschoss

Obergeschoss

Erdgeschoss

Dachgeschoss

PLÄNE ANSICHTEN | FLÄCHENAUSZÜGE

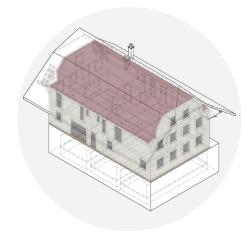
Bodenfläche = 145m²

analog Geschossfläche Erdgeschoss

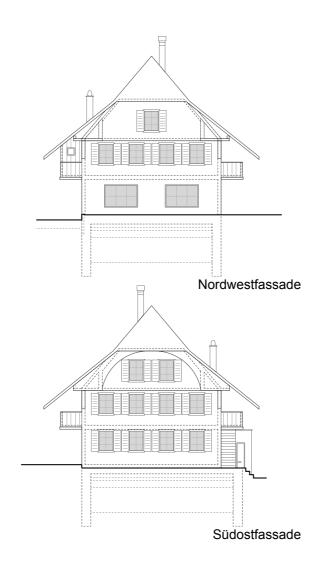
Fassadenfläche = 288m²

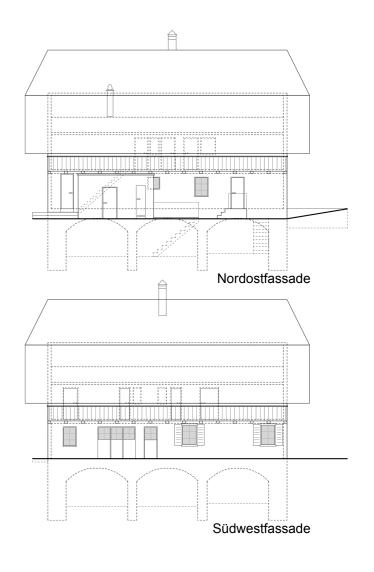
Opak (Aussenputz): 235m²

Transparent (Fenster): 53m²

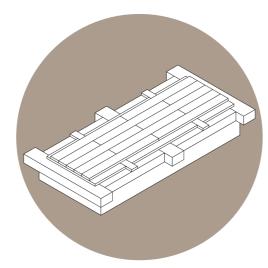

Dachflächen

Gedämmt: 190m²

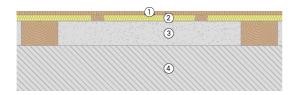

inkl. Aufsichtsfläche Grundriss


Dachfläche Südwest/Nordost je: 125m²

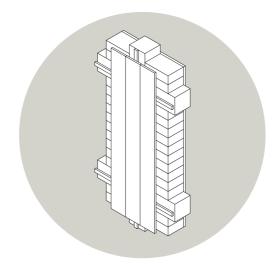
oberer Bereich 50m2 (Neigung 50°) unterer Bereich 75m2 (Neigung 40°)


PLÄNE KONSTRUKTION | U-WERTE

Historische Aufnahme mit sichtbarem Fachwerk

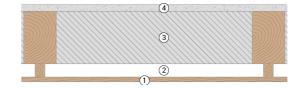

Quellen: (Annahme Konstruktionsaufbauten)
Mündliche Überlieferungen
Verwandschaft
Konstruktionslehre für den Hochbau
Lehr- und Lernmittel (Fachunterricht Hochbauzeichner)
Dämmung von Fachwerk
https://www.ubakus.de/daemmung-von-fachwerk/
Innendämmung von Fachwerk
https://www.ubakus.de/innendaemmung-von-fachwerk/
Die Fachwerkhaus-Community
https://www.fachwerk.de
Dipl.-Ing Eicke-Hennig, Werner (2017):
Historischer Wärmeschutz: Decken und Böden

A / Architecture and Building Systems

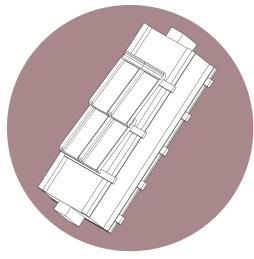


Bodenaufbau

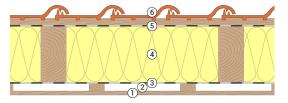
- 1. Holzriemen | 12mm
- 2. Lattung mit Zellulose | 20mm
- 3. Lattung / Ausgleichsschicht | 80mm
- 4. Gewölbekellerdecke | ca. 150mm



Bodenfläche = 145m² U-Wert= 0.722 W/(m²k)


Wandaufbau

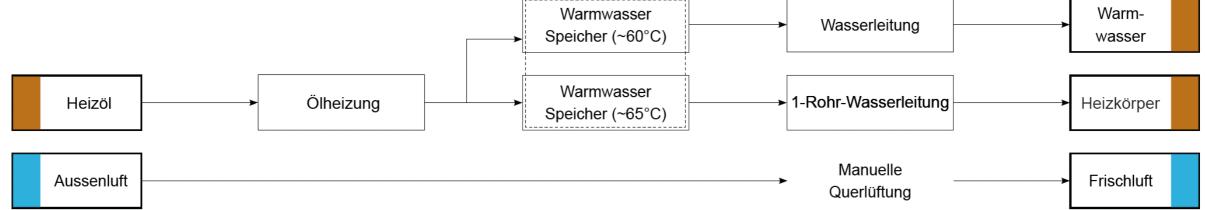
- 1. Holzvertäfelung | 15mm
- 2. Lattung&Konterlattung/Luftschicht | 40mm
- 3. Fachwerk / Tuffstein Ausfachung | 160mm
- 4. Aussenputz | 20mm


Fassadenfläche= 235m² U-Wert= 1.177 W/(m²k)

Verglasung (Zweifachverglasung | 53m²) U-Wert= 2.8 W/(m²k) g-Wert= 0.75

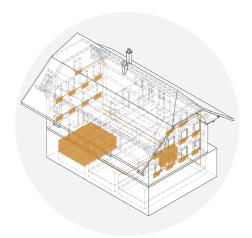
Dachaufbau

- 1. Holzvertäfelung | 15mm
- 2. Lattung / Luftschicht | 30mm
- 3. Dampfbremse | 0.5mm
- 4. Balkenlage / Steinwolle | 220mm
- 5. Unterdachbahn | 0.5mm
- 6. Ziegel inkl. Lattung



Dachfläche= 190m² U-Wert= 0.208 W/(m²k)

SYSTEM-KETTE



THERMISCHER BEDARF BESTAND

Heizwärmebedarf und Warmwasserwärmebedarf gemäss Formelsammlung (Excel-Tabelle), SIA 2028 und Bestandwerten SIA 2024.

Bemerkungen

Erhebliche Transmissionswärmeverluste durch die hohen U-Werte der Bestandeskonstruktion

Architecture and Building Systems

Heizwärmebedarf	$Q_{\rm H} = Q_{\rm T} + Q_{\rm V} - \eta_{\rm g} \cdot (Q_{\rm i} + Q_{\rm s})$
Heizwärmebedarf	$[Q_{ m H}]$ = Wh
Transmissionswärmeverluste	$[Q_{\mathrm{T}}]$ = Wh
Lüftungswärmeverluste	$[Q_{ m V}]$ = Wh
Ausnutzungsgrad für Wärmegewinne	$[\eta_{ m g}]$ = -
Interne Wärmeeinträge	$[Q_{\rm i}]$ = Wh
Solare Wärmeeinträge	$[Q_{\rm s}]$ = Wh

Auszug aus Formelsammlung

Q, Jährlicher Heizwärme Bedarf: 55'000 kWh/a

 $Q_{T} = 56'000kWh/a$

 $Q_{v} = 18'000kWh/a$

η = variert monatlich

 $\vec{Q} = 13'000 \text{ kWh/a}$

 $Q_{s} = 18'000 \text{ kWh/a}$

Q_w Warmwasserwärmebedarf Bedarf: 14'800 kWh/a

Thermischer Bedarf Gesamt: 69'800 kWh/a

 $: 400m^2 EBF = 174.5 kWh/m^2 pro EBF$

Emissionen im Betrieb:

Ölheizung: 23'732 kg/a CO₂Äq 69'800 kWh/a x 0.34 kg CO₂ Äq

: 400m² EBF = 59.33 kg/a CO₂ pro EBF

ELEKTRISCHER BEDARF

BESTAND

Elektrizitätsbedarf gemäss Formelsammlung (Excel-Tabelle), und Bestandwerten SIA 2024.

Bemerkungen

Erhöhter Elektrizitätsbedarf durch ältere bestehende Geräte und Beleuchtung

|--|

Architecture
and Building
Systems

Elektrizitätsbedarf	$E = E_{\rm A} + E_{\rm B} + E_{\rm L} + E_{\rm M}$
Elektrizitätsbedarf	[E] = Wh
Elektrizitätsbedarf der Geräte	$[E_{\rm A}]$ = Wh
Elektrizitätsbedarf Beleuchtung	$[E_{\mathrm{B}}] = Wh$
Elektrizitätsbedarf Lüftung	$[E_{\rm L}]$ = Wh
Elektrizitätsbedarf Mobilität	$[E_{\mathrm{M}}] = \mathrm{Wh}$

Auszug aus Formelsammlung

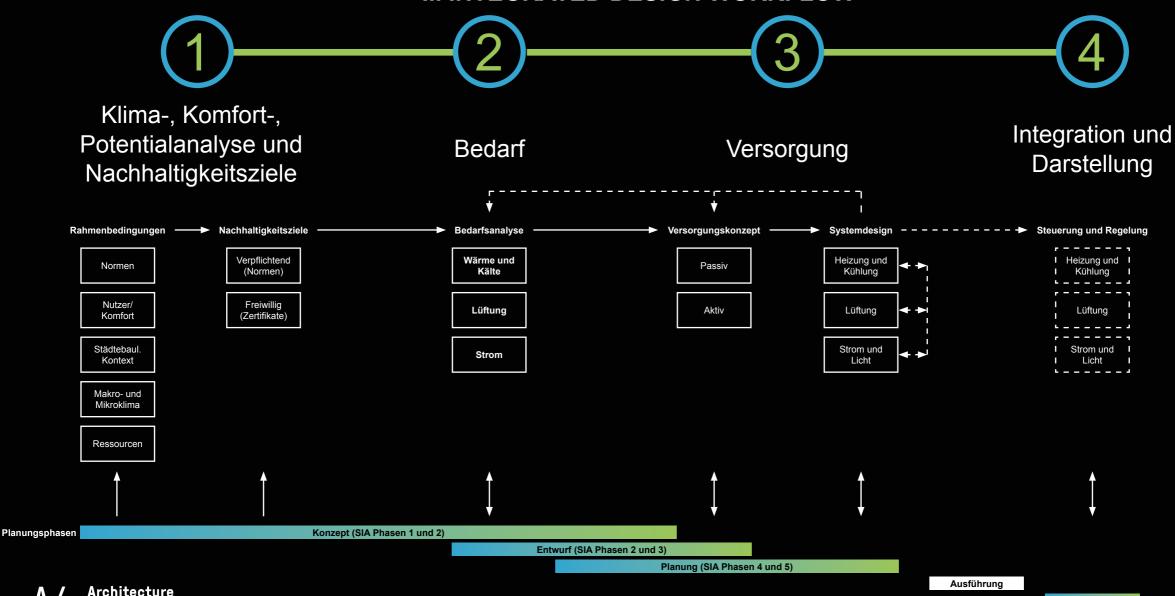
E Jährlicher Elektrischer Bedarf: 8'800 kWh/a

 E_A = 18 kWh/m2 x 400m2 = 7'200 kWh/a E_B = 4 kWh/m2 x 400m2 = 1'600 kWh/a

 E_{M} = keine

: 400m² EBF = 22 kWh/m² pro EBF

Emissionen im Betrieb:


Strombezug vom Netz 1'144 kg/a CO₂Äq

8'800 kWh/a x 0.13 kg CO₂ Äq

: 400m^2 EBF = 2.86 kg/a $\bar{\text{CO}}_2$ pro EBF

TIH zürich

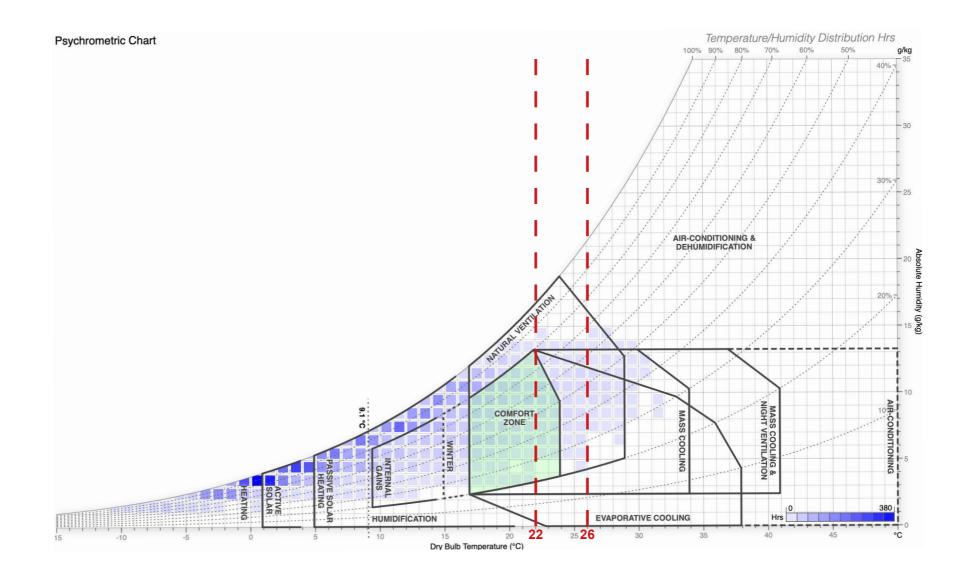
II. INTEGRATED DESIGN WORKFLOW

A / Architecture and Building Systems

Betrieb (SIA Phase 5)

II. INTEGRATED DESIGN WORKFLOW

- 1 KLIMA-, KOMFORT-, POTENTIALANALYSE UND NACHHALTIGKEITSZIELE
 - Komfortanalyse
 - Klimaanalyse
 - Potentialanalyse
 - Nachhaltigkeitsziele



KOMFORTANALYSE PSYCHROMETRISCHES DIAGRAMM

Bemerkungen

Blaue Flächen ausserhalb der roten Zieltemperaturen benötigen zusätzliche Kühlung oder Heizung.

Für die Kühlung scheint die natürliche Belüftung (Stand heute) ausreichend. Für die Heizung jedoch, ausgegangen von den üblichen solaren/internen Wärmeeinträgen, scheint ein Heizsystem unumgänglich.

Messstation: Zollikofen

KLIMAANALYSE


WETTERDATEN

Bemerkungen

Wie auf dem Psychrometrischem Diagramm bereits sichtbar liegt die Temperatur über das Jahr verteilt mehrheitlich unter dem Zielwert von 22° Celsius und nur selten stark darüber (siehe unterste Spalte).

Die solare Einstrahlung ist über das ganze Jahr verteilt relativ konstant vorhanden und könnte Potential solare Energie bieten.

Annual Weather Data Daily Values

Messstation: Zollikofen Quelle: Data-View 2D / Climate.OneBuilding

KLIMAANALYSE SONNENSTANDSDIAGRAMM

Bemerkungen

Die Schmitte hat mir Ihren Dachflächen Südwest ein sehr gutes Potential und mit der Dachfläche Nordost ein mittleres Potential für solare Energie.

Legende

Nicht bestimmt
Gering
Mittel
Gut
Sehr gut
Top

A / Architecture and Building Systems

POTENTIALANALYSE ERNEUERBARE ENERGIEN

BIOMASSE HOLZ

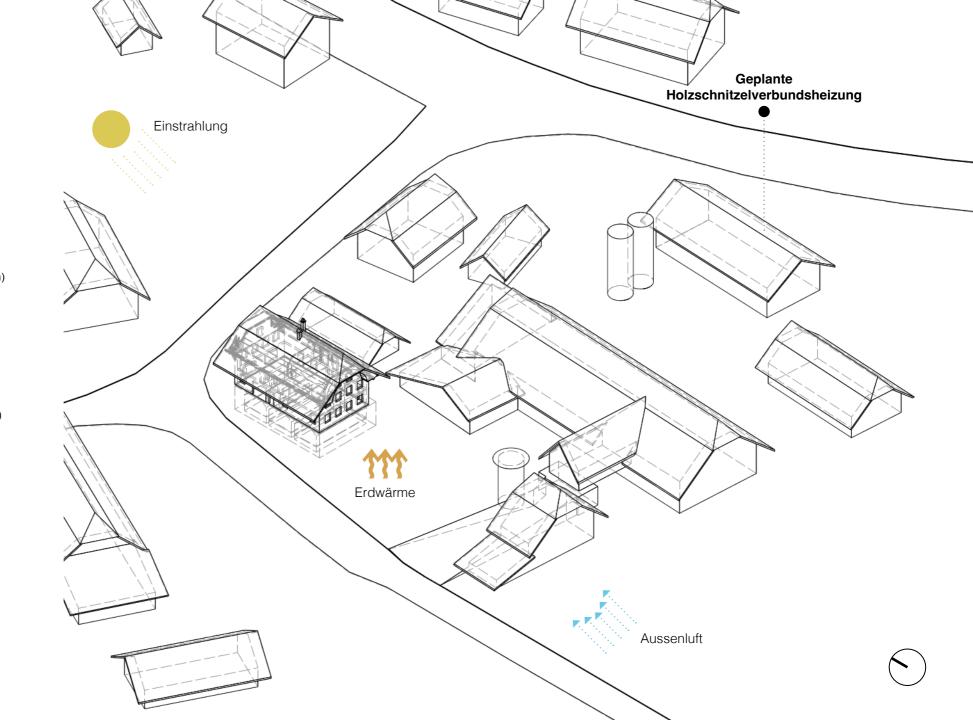
Nachhaltige verholzte Biomassen: 18.4 TJ Nachhaltige nicht verholzte Biomassen: 38.35 TJ **Geplante Holzschnitzelverbundsheizung** Voraussichtliche Inbetriebnahme Winter 2023

ERDE ERDWÄRME

Nutzung zulässig Sole-Wasser Wärmepumpe (Kollektoren/Sonden)

WASSER GRUNDWASSER

Nutzung nicht zulässig
Wasser-Wasser Wärmepumpe


LUFT AUSSENLUFT

Luft-Wasser Wärmepumpe Geschwindigkeit 4 bis 4.5 m/s (kein hoheS Windpotential) Kleinwindanlage

SONNE EINSTRAHLUNG

Südwest Potential sehr gut | Nordost Potential mittel Solarthermie

Photovoltaik

A / Architecture and Building Systems

NACHHALTIGKEITSZIELE

Architecture and Building Systems

SANIEREN

DER BESTEHENDEN BAUSUBSTANZ

U-Werte

Richtwerte: Anforderungen gemäss "Grenzwerte für Wärmedurchgangskoeffizienten bei Umbauten und Umnutzungen".

EN-102 "Wärmeschutz von Gebäuden zu SIA 380/1:2016

Dach/Decke: 0.25 W/(m²k)

Fenster: 1.0 W/(m²k) mit vorgelagerten Heizkörpern

Wand: 0.25 W/(m²k)

Boden: 0.30 W/(m²k) zu unbeheizten Räumen

ERNEUERBARE ENERGIE

NUTZEN UND ERZEUGEN

Potentiale nutzen und Heizwärme, Warmwasser und Strom ausschliesslich aus erneuerbaren (lokalen) Energiequellen beziehen, wenn möglich erzeugen.

INTEGRATION DER MASSNAHMEN

IN DEN HISTORISCHEN KONTEXT

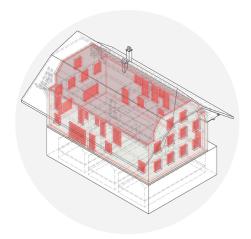
Baugruppe

Baugruppen fassen vorwiegend Baudenkmäler zusammen, die durch gegenseitige Bezüge und die Wirkung im Ensemble zusätzlich aufgewertet werden. Veränderungen innerhalb einer Baugruppe sind sorgfältig, mit Blick auf das Ganze und mit Beratung der Denkmalpflege des Kantons Bern zu planen.

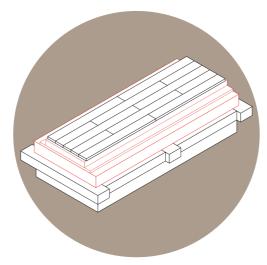
Erhaltenswertes Gebäude

Ansprechender oder charakteristischer Bau von guter Qualität, der erhalten und gepflegt werden soll. Veränderungen, die sich einordnen, und Erweiterungen, die auf den bestehenden Bau Rücksicht nehmen, sind denkbar.

II. INTEGRATED DESIGN WORKFLOW

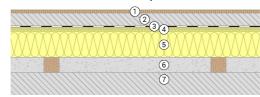

- Sanierung
- Treibhausgasemissionen Bauteile
- Thermischer Energiebedarf neu
- Elektrischer Energiebedarf neu

PLÄNE SANIERUNG | U-WERTE

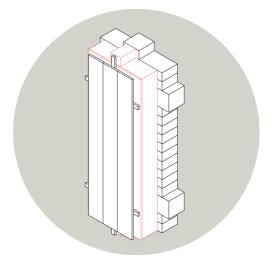


Bemerkungen

Ersatz der bestehenden Fenster durch eine Dreifachverglasung. Boden und Wänden mit Innendämmung um die erforderlichen Grenzwerte zu erreichen. Das Trocknungsvermögen der Fachwerkkonstruktion wird durch eine feuchtevariable Dampfbremse weiterhin gewährleistet. Um Feuchteschäden zwischen den Konstruktionsübergängen Wand-Dach zu vermeiden ist auf dem Dachboden eine zusätzliche Dampfbremse vorgesehen (z.B. OSB-Platten).

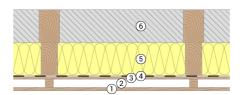


A / Architecture and Building Systems

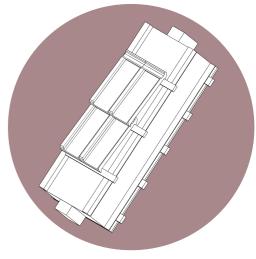


Bodenaufbau

- 1. Holzriemen | 12mm
- 2. Unterlagsboden | 50mm
- 3. PE-Folie | 0.2mm
- 4. Trittschalldämmung | 20mm
- 5. Wärmedämmung | 100m
- 6. Lattung / Ausgleichsschicht | 80mm
- 7. Gewölbekellerdecke | ca. 150mm

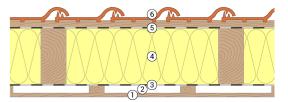


Bodenfläche = 145m² U-Wert= 0.228 W/(m²k)


Wandaufbau

- 1. Holzvertäfelung | 15mm
- 2. Lattung&Konterlattung/Luftschicht | 40mm
- 3. Zementgebundene Spannplatte | 12mm
- 4. Feuchtevaribale Dampfbremse | 0.5mm
- 5. Zellulose / Konstruktionsholz | 160mm
- 6. Fachwerk / Tuffstein Ausfachung | 160mm

Fassadenfläche= 235m² U-Wert= 0.233 W/(m²k)

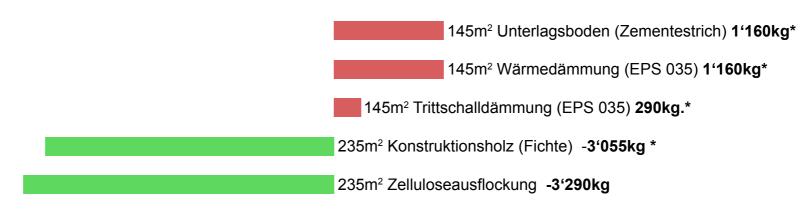

Verglasung (Dreifachverglasung | 53m²)
U-Wert= 0.7 W/(m²k)
g-Wert= 0.5

Dachaufbau

keine Massnahmen notwendig

- 1. Holzvertäfelung | 15mm
- 2. Lattung / Luftschicht | 30mm
- 3. Dampfbremse | 0.5mm
- 4. Balkenlage / Steinwolle | 220mm
- 5. Unterdachbahn | 0.5mm
- 6. Ziegel inkl. Lattung

Dachfläche= 190m² U-Wert= 0.208 W/(m²k)


EMISSIONEN

BAUTEILE

Bemerkungen

Die pflanzlichen Baustoffe kompensieren die Treibhausgasemissionen der restlichen Baustoffe je nach Berechnungsmethode.

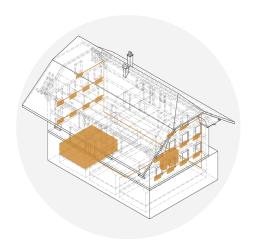
Total Sanierung Boden- und Wandaufbau: -3'735kg CO, Äq.*

Total Fensteraustausch: 3'511kg CO₂ Äq.**

Architecture and Building Svstems

^{*} Berechnungsmethode LCA: Beachte, dass Ubakus für die Bestimmung der Treibhausemissionen den "-1 / + 1"-Ansatz als Methode benutzt, welche in Deutschland und mittlerweile auch anderen Ländern angewendet wird.

^{**}Berechnungsmethode: KBOB, SIA. In der Schweiz wird der "0/0" Ansatz oder "carbon neutral approach" angewendet.


THERMISCHER BEDARF SANIERT

Heizwärmebedarf und Warmwasserwärmebedarf gemäss Formelsammlung (Excel-Tabelle), SIA 2028 und Standardwerten SIA 2024.

Bemerkungen

Die Transmissionswärmeverluste konnten durch die Sanierung erheblich verringert werden, jedoch haben sich dadurch auch zwingenderweise die solaren Wärmeeinträge verringert.

/ Architecture and Building Systems

Heizwärmebedarf	$Q_{\rm H} = Q_{\rm T} + Q_{\rm V} - \eta_{\rm g} \cdot (Q_{\rm i} + Q_{\rm s})$
Heizwärmebedarf	$[Q_{ m H}]$ = Wh
Transmissionswärmeverluste	$[Q_{\mathrm{T}}] = Wh$
Lüftungswärmeverluste	$[Q_{ m V}]$ = Wh
Ausnutzungsgrad für Wärmegewinne	$[\eta_{ m g}]$ = -
Interne Wärmeeinträge	$[Q_i] = Wh$
Solare Wärmeeinträge	$[Q_{\rm s}]$ = Wh

Auszug aus Formelsammlung

Q, Jährlicher Heizwärme Bedarf: 16'000 kWh/a

 $Q_{\tau} = 16'000kWh/a$

 $Q_{v} = 16'000kWh/a$

η_α= *variabel*

 $\vec{Q} = 12'000 \text{ kWh/a}$

 $Q_{s} = 8'600 \text{ kWh/a}$

Q_w Warmwasserwärmebedarf Bedarf: 14'800 kWh/a

Thermischer Bedarf Gesamt: 30'800 kWh/a

: 400m² EBF = 77 kWh/m² pro EBF

ELEKTRISCHER BEDARFSANIERT

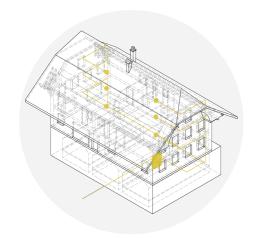
Elektrizitätsbedarf gemäss Formelsammlung (Excel-Tabelle), und Standardwerten SIA 2024.

Bemerkungen

Durch leicht verbesserte Geräte lässt sich der Elektrizitätsbedarf verringern. Die beiden Elektroautobatterien lassen den Bedarf steigen, ersetzen allerdings Verbrennungsmotoren und kommen uns beim Eigenverbrauch der erzeugten Solarstromenergie zugute.

Elektrizitätsbedarf	$E = E_{\rm A} + E_{\rm B} + E_{\rm L} + E_{\rm M}$
Elektrizitätsbedarf	[<i>E</i>] = Wh
Elektrizitätsbedarf der Geräte	$[E_{\rm A}]$ = Wh
Elektrizitätsbedarf Beleuchtung	$[E_{\mathrm{B}}] = Wh$
Elektrizitätsbedarf Lüftung	$[E_{\rm L}]$ = Wh
Elektrizitätsbedarf Mobilität	$[E_{\mathrm{M}}] = \mathrm{Wh}$

Auszug aus Formelsammlung


E Jährlicher Elektrischer Bedarf: 11'200 kWh/a

 E_{Δ} = 14 kWh/m² x 400m² = 5'600 kWh/a

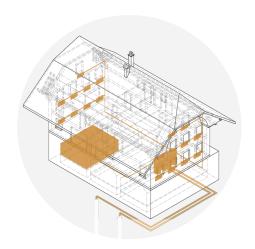
 $E_{\rm R} = 4 \text{ kWh/m}^2 \text{ x } 400 \text{m}^2 = 1600 \text{ kWh/a}$

 $E_{M} = 4'000 \text{ kWh/a (zwei Elektroautobatterie)}$

: 400m² EBF = 28 kWh/m² pro EBF

II. INTEGRATED DESIGN WORKFLOW

- Thermischer Ertrag
- Elektrischer Ertrag
- Treibhausgasemissionen Gebäudesysteme


THERMISCHER ERTRAG NEU

Gemäss Formelsammlung.

Bemerkungen

Die Ölheizung und die Holzschnitzelheizung sind als Verbrennungssysteme ungefähr gleich effizient, wobei der Brennwert des Öls höher ist und von daher weniger Masse benötigt. Bei der Wärmepumpe entfällt die Verbrennungsmasse, jedoch wird zusätzliche Exergie in Form von Elektrizität benötigt.

Architecture and Building **Systems**

Wärme durch Verbrennung	$Q_{\text{nutz}} = \eta_{\text{V}} \cdot H \cdot m$
Wärme	$[Q_{\text{nutz}}] = \text{kWh}$
Effizienz des Verbrennungssystems	$[\eta_{V}] = -$
Heizwert	[H] = kWh/kg
Masse	[m] = kg

Wärme/Kälte durch Wärmepumpe	$Q_{\text{nutz}} = E \cdot COP = Q_{\text{Anergie}} + E$				
Wärme/Kälte, nutzbar	$[Q_{ m nutz}]$ = kWh				
Strom (Exergie)	[E] = kWh				
Leistungsziffer	[COP] = -				
Wärme/Kälte aus Anergiequelle	$[Q_{\mathrm{Anergie}}]$ = kWh				

Auszug aus Formelsammlung

Ölheizung (Bestand):

 $Q_{nutz} = 30'800 \text{ kWh/a}$

 $\eta_{V} = 0.9$

H = 9.8 kWh/l (11.4 kWh/kg)

m = 3'492 I (3'002 kg)

Holzschnitzelheizung:

 Q_{nutz} = 30'800 kWh/a

 $\eta_{V} = 0.9$

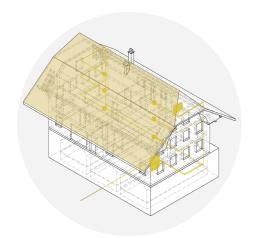
H = 4.0 kWh/kg

m = 8'556 kg

Sole-Wasser Wärmepumpe (alternative Variante):

 $Q_{\text{nutz}} = 30'800 \text{ kWh/a}$ E = 6'844 kWh

COP = 4.5


ELEKTRISCHER ERTRAGNEU

Gemäss Formelsammlung und SIA 2028.

Bemerkungen

Nutzen wir die Dachfläche Südwest mit herkömmlichen Aufdachmodulen erzielen wir einen deutliches plus an Strom als effektiv benötigt (Speicherungsprobleme nicht berücksichtigt).

A / Architecture and Building Systems

Solarstromertrag PV-Anlage	$E = G \cdot F_{F} \cdot A \cdot \eta_{PV} \cdot PR$
Stromertrag	[E] = kWh
Globalstrahlung auf horizontale Fläche	$[G] = kWh/m^2$
Faktor für Ausrichtung der Einstrahlungsebene	$[F_{\mathrm{F}}] = -$
Fläche der PV-Module	$[A] = m^2$
Wirkungsgrad des PV-Moduls	$[\eta_{\mathrm{PV}}]$ = -
Systemwirkungsgrad / Performance Ratio	[PR] = -

Auszug aus Formelsammlung

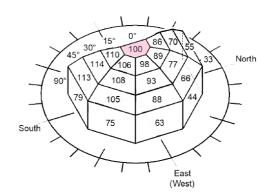
Strombezug vom Netz (Bestand)

E Solarstromertrag Photovoltaik Anlage Dach (neu): 19'092 kWh/a

 $G = 1'160 \text{ kWh/m}^2$

 $F_F = 1.05 (45^{\circ} \text{ Südwest})$

 $A = 100m^2$


 η_{PV} = 0.209 (Aufdach Modul)

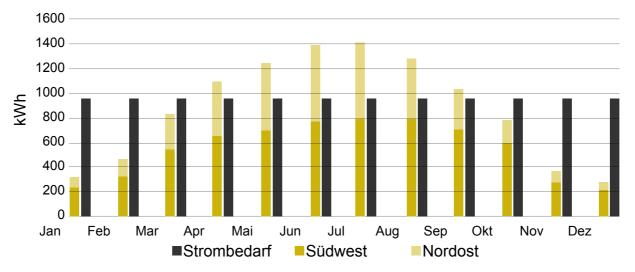
PR = 0.75

: 400m² EBF = 47.73 kWh/m² pro EBF

Daws Liabafald			_			_				_		_			_
Bern-Liebefeld			Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	Jahr
Lufttemperatur, Mittelwert	°C		-0.1	1.3	5.3	8.1	13.2	16.1	18.4	18.4	13.9	9.6	3.9	1.2	9.1
	MJ/m²	horizontal	118	181	335	420	546	594	624	544	373	230	122	91	4178
		E	75	116	204	244	305	329	348	316	213	126	67	54	2396
Globalstrahlung, Summe		S	201	252	337	285	284	270	305	343	324	271	179	153	3203
		W	88	126	204	228	281	306	332	297	220	145	80	64	2372
		N	48	65	99	119	161	181	182	145	98	67	41	35	1243
Niederschlag, Summe	r	nm	59	59	68	88	116	121	106	105	102	86	87	66	1063
Mischungsverhältnis, Mittelwert	g	/kg	3.43	3.57	4.25	5.04	7.12	8.49	9.69	9.86	8.18	6.67	4.66	3.83	6.23
Absolute Feuchtigkeit, Mittelwert	g/	m³	4.14	4.28	5.02	5.89	8.17	9.63	10.9	11.1	9.36	7.75	5.53	4.60	7.26

Auszug aus SIA 2028

ELEKTRISCHER ERTRAG ERTRAG VS. BEDARF


Bemerkungen

Mit der finalen Variante der Photovoltaikanlage mittels Solarziegel liegt der jährliche Stromertrag unter dem Bedarf. Trotzdem wird es durch die täglichen und saisonale Schwankungen nicht möglich sein diesen komplett im Eigenverbrauch zu nutzen.

Bei der Steigerung des Eigenverbrauchs im täglichen Bedarf gibt es eine Vielzahl an Strategien welche auch in kleinerem Masstab umsetzbar sind.Um hingegen die saisonalen Schwankungen auszugleichen bedarf es neuen Strategien.

Die Kombination eines auf dem Land allgegenwärtigen Silos mit einem Lastenspeicher könnte zusammen eine Ästhetik erzeugen welche die Energiewende sichtbar macht und sich langfristig, wie z.B. ein Strommasten, ins Landschaftsbild einfügt.

Jährliche Deckung (Variante Solarziegel, siehe Integration)

Jährlicher Bedarf: 11'200 kWh Jährlicher Ertrag: 9'877 kWh

Monatlicher Bedarf: 933 kWh

Täglicher Bedarf: ca. 30 KWh

Massnamen zur Steigerung Solastromeigenverbrauch

Täglicher Verbrauch

- Ausrichtung der Module in mehrere Himmelsrichtungen (Südwest und Nordost)
- Zwei Elektroautobatterien
- Hausspeichersystem ca. 15 kWh (Tagesbedarf 30 kWh :2)
- Flexible Lasten durch neue elektrische Haushaltsgeräte

Saisonaler Verbrauch (Vision)

- Kombination Silooptik mit experimentellen Speichersystem (Gewicht).

Bsp. Kombination von der Optik der handelsüblichen Huber Silos mit dem experimentellen Stromspeichersystem der Universität Innsbruck, ein Auflastkolben wird in einem mit Wasser gefüllten Zylinder mittels einer Pumpe vertikal angehoben. Beim Absinken der Auflast wird eine Turbine angetrieben und die rückgewonnene Energie ins Netz gespeist.

Foto: Universität Innsbruck

Huber Silo auf Bauernhof

EMISSIONEN GEBÄUDESYSTEME

Bemerkungen

Bei der Gegenüberstellung der Emissionen wird insbesondere im Betrieb deutlich wieso die Ölheizung ausgesorgt hat.

Erwartungsgemäss haben Anlagen wie die Wärmepumpe und die PV-Anlagen in der Erstellung erhöhte Emissionen.

Emissionen Erstellung:**

Thermischer Ertrag

Ölheizung: 340 kg/a CO₂Ä 400m² x 0.85 kg CO₂ Äq / m = 340 kg CO₂ Äq : 400m² EBF = 0.85 kg/a CO₃ pro EBF

Sole-Wasser Wärmepumpe: 13'900 kg CO_2 Äq 1 Stk. = 1'930 kg CO_2 Äq 300m x 39.90 kg CO_2 Äq / m = 11'970 kg CO_2 Äq : 400m² EBF = 34.75 kg/a CO_2 pro EBF

Holzschnitzelheizung: 340 kg/a $CO_2\ddot{A}q$ $400m^2 \times 0.85 \text{ kg } CO_2 \ddot{A}q \text{ / } m = 340 \text{ kg } CO_2 \ddot{A}q$: $400m^2 EBF = 0.85 \text{ kg/a } CO_2 \text{ pro } EBF$

Emissionen Betrieb**

Thermischer Ertrag

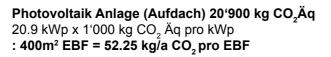
Ölheizung: 10'472 kg/a CO₂Äq 30'800 kWh/a x 0.34 kg CO₂ Äq : 400m² EBF = 26.18 kg/a CO₂ pro EBF

Sole-Wasser Wärmepumpe: 1'540 kg/a CO,Äq

30'800 kWh/a x 0.05 kg CO₂ Äq : **400m**² EBF = **3.85** kg/a CO₂ pro EBF

Holzschnitzelheizung: 616 kg/a CO₂Äq 30'800 kWh/a x 0.02 kg CO₂ Äg

: 400m^2 EBF = 1.54 kg/a $\overline{\text{CO}}_2$ pro EBF



Strombezug vom Netz

Elektrischer Ertrag

Strombezug vom Netz 1'456 kg/a CO₂Äq 11'200 kWh/a x 0.13 kg CO₂ Äq : 400m² EBF = 3.64 kg/a CO₂ pro EBF

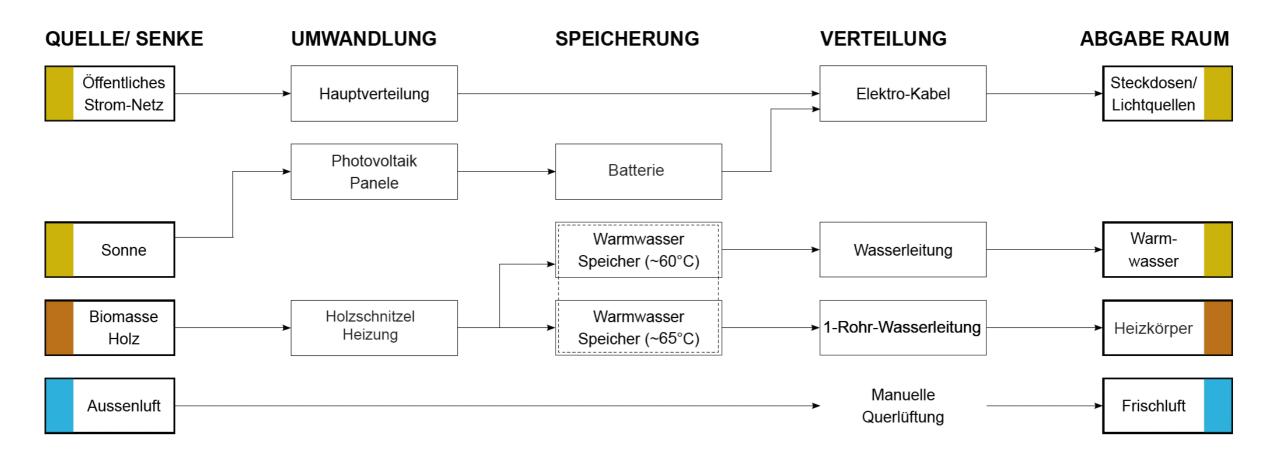
Photovoltaik Anlage (Solarziegel) 13'280 kg CO₂Äq 13.28 kWp x 1'000 kg CO₂ Äq pro kWp : 400m² EBF = 33.2 kg/a CO₂ pro EBF

Photovoltaik Anlage (Aufdach) -661.96 kg/a CO₂Äq Strombezug 2'800 kWh/a x 0.13 kg CO₂ Äq = 364 kg/a CO₂Äq

Stromabgabe 7'892 kWh/a \times -0.13 kg CO_2 Äq = -1'025.96 kg/a CO_2 Äq

: $400m^2$ EBF = -1.65 kg/a CO₂ pro EBF

Photovoltaik Anlage (Solarziegel) 172 kg/a $CO_2\ddot{A}q$ Strombezug 2'800 kWh/a x 0.13 kg $CO_2\ddot{A}q = 364$ kg/a $CO_2\ddot{A}q$ Stromabgabe 1'477 kWh/a x -0.13 kg $CO_2\ddot{A}q = -192$ kg/a $CO_2\ddot{A}q = 400$ m² EBF = 0.43 kg/a $CO_2\ddot{A}q = -192$ kg/a $CO_2\ddot{A}q = -192$


II. INTEGRATED DESIGN WORKFLOW

- Systemkette neu
- **Integration Photovoltaik**

SYSTEM-KETTE

INTEGRATION PHOTOVOLTAIK

SOLARZIEGEL VARIANTE

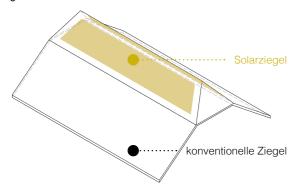
Photovoltaik Anlage Dach

Globalstrahlung auf hor. Fläche: 1'160 kWh/m² Faktor Ausrichtung: 1.05 Südwest | 0.66 Nordost

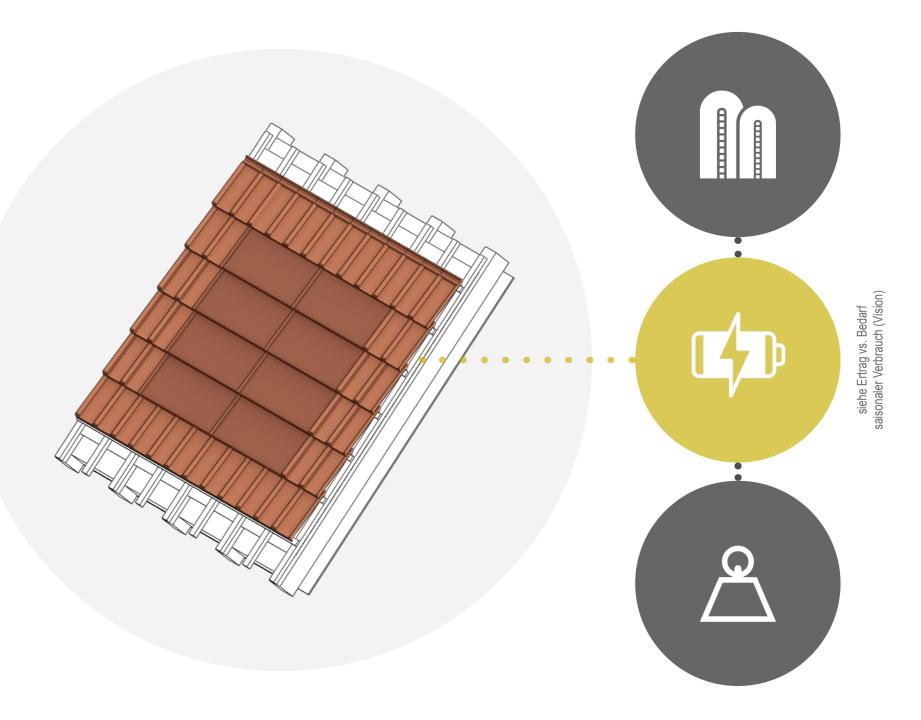
Fläche PV:40m² Südwest | 40m² Nordost

Wirkungsgrad PV Modul: 0.166*
* Solarziegel M45-10 Terracotta

Preformance Ratio: 0.75


Elektrischer Ertrag: 9'877 kWh/a

6'065 kWh/a Südwest | 3'812 kWh/a Nordost


24.69 kWh/a pro m² EBF

GRUNDSATZVORSCHLAG

Integration Photovoltaik in die Baugruppe Belegung der, in der Baugruppe Herrenschwanden vielfach vorhandenen, Krüppelwalmdächer im oberen Bereich der Dachfläche mit Solarziegel und im untern mit konventionellen Ziegeln

A / Architecture and Building Systems

PROJEKT

Schmitte Herrenschwanden

ARCHITEKTUR

unbekannt

TYPOLOGIE

Schmiede und Wohngebäude

BAUJAHR

Erstellung: 1841
Inschrift (nachträgliche?)
Unterkellerung
Sanierung: letzmals 2011

Ziegel und Aussenputz

ENERGETISCHE ECKDATEN

Thermischer Energiebedarf	Total 30'800 kWh/a	77 kWh/a pro m ² EBF
Heizung (Holzschnitzelheizung) Kühlung Warmwasser (Holzschnitzelheizung)	16'000 kWh/a - kWh/a 14'800 kWh/a	40 kWh/a pro m ² EBF - kWh/a pro m ² EBF 37 kWh/a pro m ² EBF
Elektrischer Energiebedarf	11'200 kWh/a	28 kWh/a pro m ² EBF
Lüftung (natürlich) Geräte, Beleuchtung, Mobilität	- kWh/a 11'200 kWh/a	- kWh/a pro m ² EBF 28 kWh/a pro m ² EBF
Elektrischer Energieertrag	9'877 kWh/a	24.69 kWh/a pro m ² EBF
Photovoltaik Anlage (Solarziegel)	9'877 kWh/a	24.69 kWh/a pro m ² EBF

PROJEKT

Schmitte Herrenschwanden

ARCHITEKTUR

unbekannt

TYPOLOGIE

Schmiede und Wohngebäude

BAUJAHR

Erstellung: 1841

Inschrift (nachträgliche?)

Unterkellerung

Sanierung: letzmals 2011

Ziegel und Aussenputz

TREIBHAUSGASEMISSIONEN

		Total CO ₂ Aq.	
	Erstellung	13'396 kg	33.49 kg/m ² EBF
,	Gebäudesturktur		
	 Sanierung Boden- und Wandkonstruktion* 	* -3'735 kg	-9.34 kg/m ² EBF
	- Fensteraustausch**	3'511 kg	8.78 kg/m ² EBF
	Gebäudesysteme**		
	 Holzschnitzelheizung 	340 kg	0.85 kg/m ² EBF
	- Photovoltaik Anlage (Solarziegel)	13'280 kg	33.2 kg/m ² EBF
	Betrieb**	788 kg	1.97 kg/m² EBF
,	Holzschnitzelheizung	616 kg	1.54 kg/m ² EBF
	Photovoltaik Anlage (Solarziegel)		
	 Strombezug vom Netz (2'800kWh/a) 	364 kg	0.91 kg/m ² EBF
	- Stromabgabe ans Netz (1'477 kWh/a)	-192 kg	-0.48 kg/m ² EBF

^{*} Berechnungsmethode LCA: Beachte, dass Ubakus für die Bestimmung der Treibhausemissionen den "-1 / + 1"-Ansatz als Methode benutzt, welche in Deutschland und mittlerweile auch anderen Ländern angewendet wird.

^{**}Berechnungsmethode: KBOB, SIA. In der Schweiz wird der "0/0" Ansatz oder "carbon neutral approach" angewendet.