Artemis Maneka
MAS DFAB - Ice Formwork System for Concrete Shell Structures

Title : Ice formwork system for concrete shell structures

Tutors: Vasily Sitnikov (dbt) , Juney Lee (Block research group)

Structural design is often centered on material efficiency (material quantity and strength) rather than material effectiveness (right application). Concrete shells are efficient structural forms that achieve strength through geometry and can significantly reduce resource consumption by placing material only where needed. However, the fabrication process of the concrete shells’ discretised components or the formwork system required to construct them, are often wasteful and remain challenging.

This thesis presents a material-efficient design and fabrication framework for casting of non-standard concrete elements for shell structures. The framework integrates computational design tools for shell structures with the ice formwork as fabrication system for concrete casting. The presented methodology demonstrates how the ice can be used to control the density and porosity of concrete while increasing the structural depth. Beyond material efficiency, the ornamental patterns of void created by ice, result in unique visual and lighting architectural qualities that are difficult to achieve with standard formwork systems for complex concrete shell structures.